
Journal of Sound and Vibration (2003) 259(4), 977–980
doi:10.1006/jsvi.2002.5206, available online at http://www.idealibrary.com on
OSCILLATIONS IN AN xð2mþ2Þ=ð2nþ1Þ POTENTIAL

H. Hu and Z.-G. Xiong

Department of Mathematics and Physics, Xiangtan Polytechnic University, Xiangtan 411201, Hunan,
People’s Republic of China. E-mail: huihu2000@21cn.com

(Received 17 January 2002, and in final form 7 May 2002)
Recently, Mickens [1] studied a class of non-linear, one-dimensional oscillators in an
xð2nþ2Þ=ð2nþ1Þ potential. He obtained approximate solutions by using harmonic balance
method. Motivated by Mickens’ paper, we will extend his results in this study.
Consider a one-dimensional oscillation whose potential takes the form

VðxÞ ¼ V0x
ð2mþ2Þ=ð2nþ1Þ; ð1Þ

where m5n and m; n ¼ 0; 1; 2; . . . ; and V0 is a positive constant. The force derived from
equation (1) is

f ðxÞ ¼ � dV

dx
¼ � 2m þ 2

2n þ 1

� �
V0x

ð2ðm�nÞþ1Þ=ð2nþ1Þ: ð2Þ

A particle of mass, M; acted on by the force of equation (2), has the equation of motion

M
d2x

dt2
þ 2m þ 2

2n þ 1

� �
V0x

ð2ðm�nÞþ1Þ=ð2nþ1Þ ¼ 0: ð3Þ

By a proper change of both the dependent and independent variables, this equation can be
transformed to dimensionless form

d2 %xx

d%tt
2
þ %xxð2ðm�nÞþ1Þ=ð2nþ1Þ ¼ 0: ð4Þ

In the work to follow, the ‘‘bars’’ will be dropped to give

d2x

dt2
þ xð2ðm�nÞþ1Þ=ð2nþ1Þ ¼ 0: ð5Þ

For m ¼ n ¼ 0; this equation becomes

d2x

dt2
þ x ¼ 0; ð6Þ

which is a linear oscillator. For m ¼ 1 and n ¼ 0; equation (5) gives

d2x

dt2
þ x3 ¼ 0: ð7Þ

If m ¼ n; equation (5) becomes

d2x

dt2
þ x1=ð2nþ1Þ ¼ 0; ð8Þ

which has been studied in reference [1]. When m ¼ 3 and n ¼ 1; equation (5) yields

d2x

dt2
þ x5=3 ¼ 0: ð9Þ

The following arguments are similar to Mickens’ [1].
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The system equations for equation (5) are

dx

dt
¼ y;

dy

dt
¼ �xð2ðm�nÞþ1Þ=ð2nþ1Þ ð10Þ

and the first order differential equation that the trajectories in the (x; y) phase-space satisfy
is

dy

dx
¼ � xð2ðm�nÞþ1Þ=ð2nþ1Þ

y
: ð11Þ

Since xð2ðm�nÞþ1Þ=ð2nþ1Þ is an odd function of x; equation (11) is invariant under the three
transformations:

T1 : x ! �x; y ! y; T2 : x ! x; y ! �y; ð12a; bÞ

T3 : x ! �x; y ! �y: ð12cÞ

The corresponding null-clines [2], curves along which the slope dy=dx is either zero or
unbounded, are

dy

dx
¼ 0 : x ¼ 0 or along the y-axis; ð13aÞ

dy

dx
¼ 1 : y ¼ 0 or along the x-axis: ð13bÞ

The results given in equations (12) and (13) are exactly the same as those for the simple
harmonic oscillator [2, 3]. Consequently, applying the standard phase-space qualitative
methods [2–4], it can be concluded that all the trajectories in phase-space are closed [2].
This implies that all the solutions to equation (5) are periodic [2–4].
In order to obtain an approximate solution, we use the method of harmonic balance [2].

Equation (5) can be rewritten as

d2x

dt2

� �2nþ1

þx2ðm�nÞþ1 ¼ 0; xð0Þ ¼ x0; ’xxð0Þ ¼ 0; ð14Þ

where x0 is given and the approximate solution is taken to be

xðtÞ � A cosot: ð15Þ

The parameters A and o can be determined from the harmonic balance procedure [2].
Substitution of equation (15) into equation (14) gives

ð�Ao2 cos yÞ2nþ1 þ ðA cos yÞ2ðm�nÞþ1 � 0; y ¼ ot: ð16Þ

Using the relation [5]

ðcos yÞ2nþ1 ¼ 1

22n

� �Xn

k¼0

2n þ 1
k

 !
cos½2ðn � kÞ þ 1
y ð17Þ

and keeping only the term in cos y allows the following result to be obtained:

A
A

2

� �2ðm�nÞ 2ðm � nÞ þ 1
m � n

 !
� A

2

� �2n 2n þ 1
n

 !
o4nþ2

" #
cos y

þ ðhigher order harmonicsÞ ¼ 0: ð18Þ

This leads to the following approximate solution for equation (5):

xðtÞ � x0 cos½onðx0Þt
; ð19Þ
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where

onðx0Þ ¼
22ð2n�mÞ 2ðm � nÞ þ 1

m � n

 !

x
2ð2n�mÞ
0

2n þ 1
n

 !
2
66664

3
77775

1=ð4nþ2Þ

: ð20Þ

If m ¼ n; equation (20) becomes

onðx0Þ ¼
22n

x2n
0

2n þ 1
n

 !
2
66664

3
77775

1=ð4nþ2Þ

; ð21Þ

which is equation (24) in reference [1]. For equation (7) (m ¼ 1 and n ¼ 0), equation (20)
gives

onðx0Þ ¼
ffiffiffi
3

p

2
x0; ð22Þ

which is a well-know result [2]. For equation (9) (m ¼ 3 and n ¼ 1), expression (20)
becomes

onðx0Þ ¼ ð5
6
x20Þ

1=6: ð23Þ

For linear equation (6) (m ¼ n ¼ 0), from equation (20) we have

onðx0Þ ¼ 1: ð24Þ

In summary, the mathematical properties of the oscillator, given by equation (5), have
been studied. All the solutions are found to be periodic and the method of harmonic
balance was used to construct an analytical approximation to these solutions. Therefore,
the results in reference [1] have been extended.
Finally, in order to analyse the accuracy of the approximate solution (19), we take

equation (9) for example. Equation (9), which has an approximate solution

xðtÞ ¼ x0 cos
5x20
6

� �1=6
t

" #
; ð25Þ

was studied numerically using the non-standard finite difference schemes of Mickens [6].
The particular discrete model used was

xkþ1 � xk

sinðhÞ ¼ yk;
ykþ1 � yk

sinðhÞ ¼ �ðxkþ1Þ5=3; ð26Þ

where fðhÞ ¼ sinðhÞ is the so-called denominator function, with h being the time step-size.
All numerical solutions were found to be periodic with closed trajectories in phase-space.
Figure 1 gives plots of the numerical solution xk versus t (solid curve) and the approxi-
mate solution (25) versus t (dotted curve) for h ¼ 0�02; k ¼ 0; 1; . . . ; 500 (i.e., 04t410),
’xxð0Þ ¼ 0 and xð0Þ ¼ 10; 100, 500 respectively. From Figure 1, we see that the numerical
solutions and approximate solutions are close to each other, especially when t is small.
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Figure 1. Plots of the numerical solution xk versus t (solid curve) and the approximate solution (25) versus t
(dotted curve) for h ¼ 0�02; k ¼ 0; 1; . . . ; 500 (i.e., 04t410) and ’xxð0Þ ¼ 0; (a) x0 ¼ xð0Þ ¼ 10; (b) x0 ¼ 100;
(c) x0 ¼ 500:
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